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Abstract
A discussion of the investigation of electronic localization at the thermo-
dynamical limit is given; we show that the usual methods involve practical
difficulties, especially for quasicrystals. A method based on the scaling of
bands of a supercrystal is proposed. Then, the nature of the localization is
related to the stability of the renormalization group around the fixed points of
a trace map. For quasiperiodic systems, the scaling exponents are obtained
using modified Lyapunov exponents and a Thouless formula. The case of the
Fibonacci chain is considered as an example, and analytical expressions for the
scaling exponents are found.

1. Introduction

During the last 30 years, the renormalization group [1] has been used as a powerful tool
in the study of localization–delocalization transitions in different contexts—for example, in
the free-volume percolation model of the glass transition [2], and in the localization scaling
theory [3], where the Anderson transition from extended to localized states was recognized by
finding the fixed point of the renormalization group [2]. However, the relationship between
the stability of the renormalization group and localization has not been fully explored. For
example, one can ask whether it is possible to obtain the localization length (ξ ) of a state
from the renormalization technique. This question is relevant, since in one dimension (1D),
physicists calculate ξ numerically as the inverse of the Lyapunov exponent (LE) of a transfer
matrix norm [4, 5]. From a mathematical point of view, the LE involves right- and left-limit
procedures at the localization centre [6]; however, in many works, only the norm of the transfer
matrix is taken [4, 5]. As a result, the problem of the match between the right and left solutions
is not considered (this corresponds to the well known Borland paradox [6]). Furthermore, in
the sense used by many people, the LE of an eigenenergy tends to zero in the thermodynamical
limit (as we will discuss later), regardless of the wavefunction shape. Thus, the method does
not produce the required value of ξ . Although this is a problem, it has not been seriously taken
into account, and it is clear that the present situation is not satisfactory. In 1D, the correct path

0953-8984/03/355969+10$30.00 © 2003 IOP Publishing Ltd Printed in the UK 5969

http://stacks.iop.org/JPhysCM/15/5969


5970 G G Naumis

to follow to obtain ξ is to find the localization centre of the wavefunction, and then proceed to
obtaining the LE using limits from the left and right sides of a 1D lattice [7, 8]. The problem
is how to find the localization centre and to extend the results to higher dimensions.

A clear demonstration of the inherent difficulties of this problem has been given for
quasiperiodic systems. Since the discovery of quasicrystals [11], which are non-periodic
solids with long-range orientational order, the study of quasiperiodic Hamiltonians has been
a very active field of research. In 1D, the Fibonacci chain and the Harper model are the
most studied systems [13–17]. For the Fibonacci chain, it has been proved that the spectrum is
singular continuous (fractal), and the wavefunctions are critical [18]. For 2D and 3D, the nature
of the spectrum and the localization properties are still open questions, although it has been
shown [19] that the topological disorder and the associated frustration of the wavefunction
make the problem very different from the 1D case. The renormalization group has been a
very useful tool in studying the phonon and electronic spectra of quasiperiodic systems in
1D [13, 20] and 2D [19, 21], due to the self-similar nature of the potential that makes this
formalism particularly involved. However, even in 1D it has not been possible to find the
localization length and the scaling properties for all the wavefunctions, and the roles of the
boundary conditions in the thermodynamical limits are not well understood.

Hence, it is clear that the issue of how one should take the thermodynamical limit to study
localization is delicate, and that its importance has been underestimated in the literature. An
alternative approach for investigating localization has been proposed by the present author
in [22], adapting arguments due to Thouless [9] and Sire [10]. In 1D, this approach turned out
to be closely connected with the nature of the transfer matrix trace map renormalization group
flow; thus it can be used as a diagnostic indicator for localization [12]. However, in [22], various
points were not clear, since the relationship between localization and stability was obtained
using an approximation,and the nature of the boundary conditions in the thermodynamical limit
was not discussed. Also, the theory was derived only for the ‘on-site’ (also called ‘diagonal’)
problem [22].

The aim of this paper is twofold. On one hand, we aim to provide a solid basis for the
previous work [22] by showing how the boundary conditions at the thermodynamical limit,
the scaling of bands, and the method of the transfer matrix are interconnected, and to give a
warning regarding how to take the thermodynamical limit in the localization problem. This
new unified point of view is able to produce expressions for the LE in terms of the trace
map, without using approximations. As an example, a Thouless type of formula for scaling
exponents in quasicrystalline systems is derived. Also, generalizations to the ‘diagonal’ and
‘mixed’ Hamiltonian problems are presented. On the other hand,as an application of the theory,
we present new analytical results for the scaling exponents and the nature of localization in a
quasiperiodic system, using the Kohmoto, Kadanoff, and Tao [13] recurrence relation for the
trace of a Fibonacci chain. These results can be extended to other quasiperiodic [18, 20, 23]
and disordered potentials.

The work is arranged as follows. In section 2 a discussion of the boundary conditions and
the thermodynamical limits is given, and the method for using the renormalization group is
presented; it is based on the scaling of bands. In section 3 the method is applied to the case of
the Fibonacci chain, and in section 4 the conclusions are given.

2. Scaling of bands and localization

In this section, we will discuss the need for a new tool, derived from the transfer matrix, for
investigating localization. Let us start the discussion by giving some general reflections on the
abuse of LEs in the literature.
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As a model, we use a very simple Hamiltonian that contains a lot of the physics involved
in the localization problem: a 1D s-band tight-binding Hamiltonian. In more dimensions,
the method of evaluating localization using the scaling of bands works in a similar way. The
Hamiltonian is defined on a chain of n sites, with an on-site potential Vn at site n, and the
hopping integral tn+1, for hopping between sites n and n + 1. The corresponding Schrödinger
equation for this model is

tnψn−1 + tn+1ψn+1 + Vnψn = Eψn, (1)

where ψn is the value of the wavefunction at site n. The usual procedure used to investigate
localization in this system is as follows. Equation (1) can be rewritten in terms of the transfer
matrix M(n, E) and a vector Ψn with components (ψn, ψn−1), that satisfies

Ψn+1 ≡
(
ψn+1

ψn

)
=

( E−Vn
tn+1

− tn
tn+1

1 0

) (
ψn

ψn−1

)
≡ M(n, E)Ψn . (2)

The wavefunction at site n is given by successive applications of equation (2):

Ψn = M(n, E)M(n − 1, E) · · · M(1, E)�1 ≡ T (n, E)Ψ1. (3)

The spectrum is the set of energies for which the trace norm τn(E) ≡ tr T (n, E) is less
than 2 [18]. This comes from the following line of thought. The LE that measures the growth
of the wavefunction is [24]

γ (E) = lim
n→∞

1

n
ln‖T (n, E)‖ = lim

n→∞
1

n
ln|λmax|, (4)

where λmax is the greatest eigenvalue of T (n, E). λmax can be found by using the characteristic
equation of the transfer matrix, and the trace invariance under unitary transformations. The
two eigenvalues of T (n) are

λ±(E) = τn(E)±
√
τ 2

n (E)− 4 det T (n, E)

2
(5)

where det T (n, E) is the determinant of the matrix T (n, E). Using the fact that the determinant
of a product is the product of determinants, we get

det T (n, E) =
n∏

j=1

det M( j, E) = t1
t2

t2
t3

· · · tn−1

tn

tn
tn+1

= t1
tn+1

.

For a periodic crystal, or if we use cyclic boundary conditions, t1 = tn+1, and
det T (n, E) = 1. Equation (5) reads

λ±(E) = τn(E)±
√
τ 2

n (E)− 4

2
. (6)

In an energy that belongs to the spectrum, λ+(E) and λ+(E) are complex numbers [6], both
with unitary norm. This means that the LE at the corresponding energy is zero when n → ∞
since ‖T (n, E)‖ is always 1. These energies correspond to solutions that satisfy the boundary
conditions, i.e., solutions that are bounded at infinity. From equation (6), it follows that for
infinite crystals or cyclic boundary conditions, E must satisfy |τn(E)| � 2 in order to be an
allowed energy. This is a necessary but not sufficient condition. To further investigate this
condition, we will consider the difference between an infinite crystal and cyclic boundary
conditions.

Suppose for the moment that we are dealing with a finite cell of size n that can be the
unitary cell of an infinite crystal. In this infinite crystal, the boundary conditions imply that
ψn+2 = ei(n+1)k(E)ψ1 and ψn+1 = ei(n+1)k(E)ψ0, where ei(n+1)k(E) is a phase and k(E) the usual
wavevector. The same cell can be used to make a chain with cyclic boundary conditions, where
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ψn+2 = ψ1 andψn+1 = ψ0, which corresponds to setting k(E) = 0 in the boundary conditions
of the infinite crystal. For this crystal, from equation (2) we get(

ψn+2

ψn+1

)
= ei(n+1)k(E)

(
ψ1

ψ0

)
= T (n, E)

(
ψ1

ψ0

)
, (7)

and for having a solution for non-trivial values of ψ1 and ψ0,

det(T (n, E)− ei(n+1)k(E) I ) = 0.

This condition is satisfied only when

τn(E) = 2 cos((n + 1)k(E)). (8)

Since the cosine takes values between −1 and 1, all energies that satisfy |τn(E)| � 2 are in the
spectrum. For cyclic boundary conditions, k(E) = 0, and thus only energies where τn(E) = 2
are eigenvalues. Notice that the allowed energies are exactly the same as in an infinite crystal
but with the restriction τn(E) = 2. This very important fact will be used later, and provides
great insight into how to use the transfer matrix in order to detect localized states, since for
cyclic boundary conditions nothing was said about the localization nature of the states.

When equation (8) holds, from equations (4) and (5) the LE is always zero and this proves
that, in general, the condition |τn(E)| � 2 cannot be used in conjunction with equation (4) at
the thermodynamical limit, as is usually done. Now the question is how to use the trace to
detect a solution that corresponds to a localized state or a critical state, i.e., what the equivalent
for the condition |τn(E)| � 2 is. Although the same condition has been used for many systems,
such as quasicrystals [13], it is not clear whether the condition holds or not and, usually, some
assumptions are taken for granted, rather than discussed. Our purpose here is to clarify this
essential point.

The solution is to note that the allowed energies always satisfy τn(E) = 2, irrespective
of the nature of the state, when cyclic boundary conditions are used. Thus, this can be used
as a condition that holds even for localized states. However, we can make use of the fact that
this is just an energy inside the spectrum of the infinite crystal, and thus use the condition
|τn(E)| � 2 and take the limit n → ∞ to detect an eigenstate. How is this possible? In the
condition |τn(E)| � 2, what we are really doing is constructing a supercrystal, where the unit
cell is given by a piece of the chain to be considered. This assumption has been made in the
study of quasicrystals, where the procedure is known as ‘rational approximation’. Hence, the
condition |τn(E)| � 2 can be used even for a quasiperiodic potential [13]. But if we use this
condition, again we cannot detect localization from the usual procedure, equation (4).

The big advantage of using the supercrystal is that, now, the issue of localization can be
related to the scaling of bands, adapting arguments form Thouless [9] and Sire [10],as was done
in [22]. The idea is to build a supercrystal, by considering a piece of chain with n sites as the
unit cell; the cell can be amorphous, quasiperiodic, or crystalline. The resultant supercrystal
has Bloch solutions and a spectrum with n bands, where each bandwidth Wn depends on the
overlap of the wavefunctions at the interfaces of contiguous cells [22]. Now, we can relate
localization to the stability of the trace, since Wn depends on the trace through the band edges
(energies that we denote as Es). The band edges are the points where

τ (Es) = ±2 and
dτn(E)

dE

∣∣∣∣
E=Es

�= 0.

The condition on the derivative is due to the fact that in a band edge the trace must cross the
line defined by τ (Es) = ±2 (see figure 1). In [22] an approximate derivation for the numerical
relationship between stability and localization was found. Here, we present an exact derivation
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Figure 1. The evolution of the trace for different sizes of the system for three kinds of localization.
The bands edges Es, where τn(Es) = ±2, are shown as circles, while the corresponding traces
are shown as dark circles. The bandwidths are the dark lines on the E-axis. Notice that it is
possible to have oscillations of the trace inside the spectrum, as happens for example in the case of
a monocrystal, where the number of oscillations is equal to the number of sites. The unit cell sizes
are, from top to bottom, N = 1, 2, and 4 sites.

using the Thouless formula [6]. We proceed as follows. First, we write the trace of the infinite
supercrystal as a polynomial:

τn(E)− 2 = Cn

∏
i=1

(E − Ei ), (9)

where Ei are the roots of τn(E)− 2 = 0, and Cn is a constant. After taking the logarithm of
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the derivative with respect to E evaluated at one of the band edges (Es), we get

ln

(
dτn(E)

dE

)
E=Es

=
∑
i �=s

ln(Es − Ei). (10)

Observe that the derivative in a band edge is never zero, so there are no problems of having
a divergence. Now, we make the following observation. Since the Ei are the points where
τn(E) = 2, these are the only values that satisfy a cyclic boundary condition for the same finite
cell of size n, as was shown before. Taking into account this observation and that each state
has a weight 1/n in the density of states, we can perform the sum in equation (10) by using
the density of states (ρn(E)) of the cyclic problem. This leads to

1

n
ln

(
dτn(E)

dE

)
E=Es

=
∫ ∞

−∞
ρn(E

′) ln(Es − E ′) dE ′. (11)

Using the well known Thouless formula [6], which stipulates that the inverse of the localization
length ξ(Es) is equal to the integral that appears in the previous equation, and taking the
thermodynamical limit n → ∞, we get an expression that now depends on the trace:

lim
n→∞

1

n
ln

(
dτn(E)

dE

)
= 1

ξ(E)
.

Notice that we can drop the ‘s’, since it is understood that the derivative must be evaluated
at a band edge. The relation to the stability of the trace map is evident. Now, it corresponds to
a LE, used in the sense that gives how much two trajectories diverge under the action of τn(E),
when the initial conditions differ by a small quantity.

For quasiperiodic systems, the wavefunction decays as ψn ≈ nβn(E) [18]; hence the LE
can be zero. To avoid this problem, instead of dividing by n in equation (11), we divide by
2 ln n, since for the supercrystal, Wn � 〈ψn |H |ψ1〉 � n2βn(E). Then we get a modified LE that
gives the scaling exponent of the wavefunction, and a Thouless formula that is appropriate for
quasiperiodic systems:

βn(E) ≡ 1

2 ln n
ln

(
dτn(E)

dE

)
= n

ln n

∫ ∞

−∞
ρn(E

′) ln(E − E ′) dE ′. (12)

In general, the scaling exponent obtained from this equation is a minimum, as one can
argue from the fact that the overlap between cells is dominated by the maximal overlap. From
a physical point of view, this is the most important exponent, because it rules the maximum
conductivity of the system. In the cases where the gaps between the bands are very small,
some corrections may appear due to hybridization of levels in neighbouring cells.

For many systems, there are recurrence relations for the trace of a certain chain size [13]
as a function of the trace of m smaller chains of lengths l j :

τn(E) = f (τl1(E), τl2(E), . . . , τlm (E)). (13)

These types of relation are called trace maps, and they are powerful tools for studying the
spectrum, especially for quasicrystals. The properties of localization are determined by the
stability of the trace map around the points τn = ±2, since, for a localized state, the band
shrinks in an exponential way as the system grows, due to a decreasing overlap between
neighbouring cells [22]. Thus, a localized state corresponds to a repulsive fixed point of the
trace map, as shown in figure 1. For extended states, the band edges do not change with the
system size because the overlap is size independent, and τn(Es) = ±2 for any n and fixed Es.
τn(Es) = ±2 is a fixed point of the trace map, and equation (13) must satisfy

±2 = f (±2,±2,±2, . . .).
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The point τn(Es) = ±2 is hyperbolic in nature, since, as the system is scaled, the trace for
energies inside the band remains bounded, while for other energies it goes to infinity. In 1D
quasiperiodic systems, the bands are subdivided as n grows in a similar way to in the generation
of a Cantor set, and thus the number of points Es grows with the system size (see figure 1).

3. Application for a quasiperiodic potential: the Fibonacci lattice

As an example of the use of the technique proposed, we will obtain the analytic scaling
exponents for the wavefunctions of the simplest quasiperiodic potential: the Fibonacci chain.
For this system it has been rigorously proved that the LE in an energy inside the spectrum
is zero [18, 27]. Although now there are many well developed mathematical techniques
for studying quasiperiodic Hamiltonians [28–30], the problem of determining the scaling
exponents of the wavefunction has been approached from numerical calculations. Only for a
certain state is the exact scaling exponent known, and some discrepancies in its value appear in
the literature [26, 32]. The objective of this section is to apply the technique proposed to show
how it works, and to obtain an independent deduction of the nature of the spectral properties.
The method is able to produce scaling exponents of the wavefunctions at all energies, and it
reproduces the correct analytical exponent for the only energy for which an analytical exponent
is known.

We start by defining the model. In the diagonal problem, the potential V (n) is taken from
a sequence of two letters, A and B. The sequence is generated using the following recursive
rule: A → B and B → BA. It has been proved that the trace of a chain with length F(l) (F(l)
is the Fibonacci number of generation l) is given by [13]

xl(E) = xl−1(E)xl−2(E)− xl−3(E), (14)

where xl is half the trace (xl = τl(E)/2). The map has as initial conditions x−1(E) = 1,
x0(E) = (E + λ)/2, and x1(E) = (E + λ)/2, where λ = |(VA − VB)|/2. The nature of the
states is easily obtained from the approach presented in this work. First one needs to obtain
the fixed points of the map; in this case, if we denote the fixed point as x∗, from equation (14),

x∗ = 2(x∗)2 − x∗,

two solutions are found: x∗ = 0 and 1 (notice that this corresponds to τ (E) = 2). However,
0 is not consistent with the initial conditions, since the map has an invariant [13]:

x2
l+1(E) + x2

l (E) + x2
l−1(E)− 2xl+1(E)xl(E)xl−1(E) = λ2 + 1.

From the invariant, is easy to show that the other fixed point (x∗ = 1) occurs only when we
have a periodic chain, i.e., λ = 0 and V (n) = VA = VB. For this value of the parameter λ, the
system presents extended states, but it is instructive to apply the method presented to determine
localization. In principle, from the fact that we have fixed points of the map for λ = 0, this
means that the states are localized or extended. To go further, we need to investigate the nature
of the flux of the renomalization group around x∗(E) = 1. Stability is obtained by carrying
out a linear stability analysis. We use that the map can be seen as a trajectory in 3D [13], where
the coordinates of a point p = (xn+1, xn, xn−1) are iterated to form a 3D map:

xn+2(p) = xn+1xl − xl−1

xn+1(p) = xl

xn(p) = xl−1.

The analysis consists in a Taylor expansion around the fixed point. Since the map is a
vectorial function, the derivative is a 3 × 3 matrix, and if we make a move around the fixed
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point given by the small vector dp ≡ (εx, εy, εz), the expansion is( xn+2(p + dp)

xn+1(p + dp)
xn(p + dp)

)
≈

( xn+2(p)

xn+1(p)
xn(p)

)
+

( 2yl 2xl −1
1 0 0
0 1 0

)(
εx

εy

εz

)
.

The nature of the flux is obtained from the three eigenvalues of the derivative matrix [31]
evaluated at the point p = (1, 1, 1); these eigenvalues are

r1 = −1, r2 = σ 2, r3 = 1/σ 2,

where σ is the golden mean (
√

5 + 1)/2. Since we have an eigenvalue bigger than one, and the
other is less than one, the point is classified as hyperbolic; in one direction the flux diverges,
while in the other the point acts as an attractor. The hyperbolic nature of the flux means that
the states are extended, as expected.

There are no repulsive fixed points; hence localized states are not observed. The remaining
possibility is to have critical states, as is revealed from the fact that the map contains two cycles:
one of period two and the other with period six [26]. A similar stability analysis can be made
for the cycles, except that the derivative is obtained by multiplying the matrices in each point of
the cycle. For the period-six cycle, which corresponds to energies at the centre of the spectrum,
the eigenvalues of the resulting matrix are [26]

r1 = −1, r2,3 = [(1 + 4(1 + λ2)2)1/2 ± 2(1 + λ2)]2. (15)

From this, one can show that the trace scales as τl+6(E) = (τl(E))α , where

α = ln σ 6/ ln(r2) = ln σ 3/ ln((1 + 4(1 + λ2)2)1/2 + 2(1 + λ2)).

Using equation (12), the stability of the map leads to a prediction that the scaling exponent of
the wavefunction is

β = α

2
. (16)

The result for the off-diagonal problem (where V (n) = 0 and tn is given by a Fibonacci
sequence of tA and tB) is similar, but λ must be replaced by λ = |y − (1/y)|/2, where
y = tA/tB. The result obtained can be compared with the scaling exponent of the state at
E = 0. This energy is the only one for which an analytical expression is known [26]:

β = ln y/ ln σ 3. (17)

Later, a different result for the same state was published, obtained using a multifractal
analysis [32]. Two limiting exponents were obtained; one is a maximum and the other a
minimum [32]:

β± = [ln L(y2)± ln(y2)]/ ln σ 3 (18)

where L(x) is defined as

L(x) = (1/2x)[(x + 1)2 + ((x + 1)4 + 4x2)1/2]. (19)

In figure 2, a comparison between equations (17) and (18) and our work, given by
equation (16), is shown. Notice that for y  1, all the results coincide (for y � 1, all
the methods also agree, due to the symmetrical form of λ with respect to tA and tB). In fact, if
in equation (16) we use that 1/y is small compared with y when y  1, β− is recovered, and
our method predicts exactly the same minimum scaling exponent, as expected.

For y → 1, the previously published results are different (β = 0 in [26], andβ = 1 in [32]).
No comments were made by the respective authors about this discrepancy [26, 32], but it has
been proved that for this state, the scaling exponent depends on the boundary conditions and
shifting position of the chain [33]; these effects are in fact due to a general instability of singular
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Figure 2. Comparison between the scaling exponents of the wavefunction using the method of
this work (dashed curve), with the only energy for which there are analytical expressions. Crosses
are obtained form Tang et al [26] and the two solid curves are from Fujiwara et al [32]. The lower
curve corresponds to the minimum scaling exponent (β−) and the other to the maximum scaling
exponent (β+).

continuous spectra [34–36] and are enhanced in this limit because it corresponds to the ‘strong
quasiperiodic’ limit.

In this limit, the method presented here (equation (16)) predicts a scaling exponent
β = 1/2, if one assumes that the scaling of the trace is governed by the period-six cycle.
Our result is between the scaling exponents of [26] and [32], since the results from other works
represent extreme cases for different classes of boundary conditions. Notice that for y = 1,
the scaling of the trace is such that each individual band touches the neighbouring bands, and
the spectrum degenerates into a single band. For y = 1, the six cycle degenerates into a single
fixed point and extended states appear, as studied previously. However, the case y → 1 but
y �= 1 needs more reflection. There the effects of quasiperiodicity are stronger, and a lot
of problems are encountered, because the well known problem of small divisors shows up
strongly in a perturbative approach [37]. In fact, when y → ∞, a perturbative method can
be used to obtain the spectrum [38]. The success of our initial estimation is due to the same
factor; i.e., in the assumption that Wn scales as n−2β(E,n), the size of the band was estimated
as a perturbation using the ‘unperturbed’ wavefunctions of each cell of the supercrystal. This
approximation holds for well separated bands, but if the gaps are small compared with the
bandwidths, a hybrid wavefunction can be formed. Thus, in the limit y → 1 the scaling
of neighbouring bands influences the scaling of the wavefunction. Since the six cycle has
the lowest scaling exponent, the effect of the other bands is to increase localization, and, for
example, in the Fibonacci chain, the maximum scaling exponent is given by the eigenvalues
of the derivative matrix evaluated in a two cycle, which in the limit y → 1 goes to 1.5.

4. Conclusions

To summarize, this work shows that the renormalization group is a very useful tool for studying
localization and gives a natural classification for the types of localization,avoiding the problems
concerning the thermodynamical limit that the usual LEs have. Further, the localization
properties are obtained from the stability of the renormalization group, and this allows a natural
classification of the types of spectrum and localization. When applied to the Fibonacci chain,
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the method produces results that are comparable to those found in other works. Although the
approach used only gives an approximate bound for localization, the main advantage of the
method presented is that it can be applied to all of the bands. Moreover, another important
issue that is clarified is that extended states are observed for λ = 0, and thus the transition from
critical to extended states occurs in a discontinuous manner, as in a phase transition, when the
correlation length becomes infinite. The possibility of localized states is ruled out due to the
absence of repulsive fixed points.
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